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• Linear algebraic systems in Hilbert space 
– Eigenvalues of unitary matrices 
– Relationship of the phase of a state vector acted on by a unitary operator to produce an eigenvalue
– Phase estimation  

• Revisiting the quantum Fourier transform
– Solution of linear algebraic systems using the quantum phase estimation method
– Harrow, Hassidim  and Llyod (HHL) quantum linear systems algorithm
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Agenda



• Some of the most widely used techniques in computing are based on the solution  of  a system of linear 
equations that read 

𝐴𝑥 = 𝑏, 𝐴 ∈ ℝ!×!, 𝑥 ∈ ℝ! and 𝑏 ∈ ℝ!,   Eqn. (15.1).
• Such  a system of equations may  commonly arise when attempting  to solve machine learning  problems.

• When  𝐴 is a small matrix and invertible,  it is generally easy to find the unknown list (components of the 
vector) in 𝑥;  such  solutions are obtained from

𝑥 = 𝐴#$𝑏 Eqn. (15.2).
• Popular methods  of solution  (for reasonably sized) matrices include the Gaussian elimination method 

and the conjugate gradient method. However, when the system of equations exhibited in (15.1) is 
generated from practical problems of interest such as in machine learning or discretized dynamical  
differential equations governing behaviors of objects such as aircraft wings, solving such systems of 
equations can be very challenging.

• There is a growing body of evidence that quantum computing can offer algorithms that can conceivably 
solve linear systems faster and at lower computational cost.
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Linear Algebraic Systems 



• Since  vector spaces (Hilbert spaces) in quantum computing are complex,  the linear system of equations  
becomes 

𝐴𝑥 = 𝜆𝑥, 𝐴 ∈ ℂ%!×%!, 𝑥 ∈ ℂ%!,  and 𝜆 ∈ ℂ,  Eqn. (15.3).
• Here are a few important facts we will use later for the complex linear systems we discuss: 

𝐴𝑥 = 𝜆𝑥 ⟹ 𝑥 = 𝐴#$𝜆𝑥 and 𝐴%𝑥 = 𝜆%𝑥 Eqn. (15.4).
– Reflections have  phases of ±1; rotations are implemented by 𝑒±"#,  and projections have eigenvalue 𝜆 = 1.

• For a unitary operator 𝑈 with an eigenvector ⟩|𝑥 that operates on a set of 𝑚 qubits, we can write
𝑈 ⟩|𝑥 = 𝜆 ⟩|𝑥 = 𝑒%&'( ⟩|𝑥 Eqn. (15.5).

• Because of the unitarity of 𝑈,  its eigenvalues  have the norm 1 or 𝜆 = 1, which is  equivalent to writing 
𝜆 = 𝑒%&'( Eqn. (15.6).

• Finding the eigenvalues of 𝑈 is tantamount to determining the primitive  roots of unity and translates to  
figuring out the  values of  𝜗 such  that  0 < 𝜗 < 1. This is the phase estimation problem.
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Linear Systems in Complex Vector Spaces



• A decimal in binary notation can be written as 𝜗 = 0. 𝜗$𝜗%…𝜗!, where each 𝜗) is either 0 or 1.  

• One can therefore write 

𝜗 = 0. 𝜗$𝜗%…𝜗! ⟷ 𝜗 =7
ℓ+$

!

𝜗ℓ2#ℓ

• The number 0.75 in decimal is equivalent to the binary 0.11 because we can write 

0.11 = 1×2#$ + 1×2#% = 0.75.
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Binary Decimals
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• Since the phase in (15.5) is constrained to be constrained, i.e.,  0 < 𝜗 < 1, we can write it as a 
decimal binary number,  thus

𝜗 = 0. 𝜗!𝜗"𝜗#…𝜗$ = ∑ℓ&!$ 𝜗ℓ2'ℓ Eqn. (15.6).

• If we approximate 𝜗 ≈ 0. 𝜗!, then the constraint above implies we can rewrite (15.5) as
𝑈 ⟩|𝑥 = 𝜆 ⟩|𝑥 = 𝑒"()*.,! ⟩|𝑥 Eqn. (15.7).

• For simplicity, we take it that  ⟩|𝑥 is an input to the  operator 𝑈. A simple circuit that implements the  
process of  making ⟩|𝑥 available to 𝑈 is illustrated on the right.  If the input is initialized to ⟩|0 , we 
will use a Hadamard to create a superposition of the input state with ( ⟩|1 ), thus 

𝐻 ⟩|0 = ⟩|* / ⟩|!
"

.

• At the plane 1, the state vector available for 𝑈 = 𝑈""to operate on is the tensor product 

𝜓! =
⟩|* / ⟩|!
"

⊗ ⟩|𝜑 = ⟩|* ⟩|0 / ⟩|! ⟩|0
"

Eqn. (15.8).

• Recalling that a controlled-operator only changes what it operates on when the control qubit is  1, we 
see that at plane 2 we will  have

𝑈 ⟩|* ⟩|0 / ⟩|! ⟩|0
"

= ⟩|* ⟩|0 / ⟩|! 1 ⟩|0
"

= ⟩|* ⟩|0 /234 "()*.,! ⟩|! ⟩|0
"

Eqn. (15.9).

Phase Estimation  



• The effect of 𝑈 on the input to the circuit on the previous slide is Eqn. (15.9), which we rewrite as

𝜓% =
⟩|@ ⟩|A BCDE %&'@.($ ⟩|$ ⟩|A

%
= ⟩|@ BCDE %&'@.($ ⟩|$

%
⊗ ⟩|𝜑 Eqn. (15.10).

• We see that 𝑈 has written phase information into the first qubit but left the second qubit intact.

• The main idea here is that if we keep applying controlled-𝑈 operations at successively higher powers of 
2@, 2$…2!#$ , which means 𝑈%% , 𝑈%$ , …𝑈%&'$ 𝑈$, 𝑈%, 𝑈F… , we will encode phase information into 
the input qubits.  

• We will next analyze what happens if we have a two-qubit input register and the operators 𝑈$ and 𝑈%.
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Phase Estimation 
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• Adding  a second qubit to the the circuit and another 
controlled-𝑈 gate that is squared leads to the circuit  on the 
left.  With two qubits,  we  will  also assume that 𝜗 = 0. 𝜗!𝜗".

• If we look at plane 2,  the state vector is now a  tensor that 
includes the following

⟩|𝜒" = ⟩|% &'() "*+%.-5-6 ⟩|!
"

⊗ ⟩|% & ⟩|!
"

⊗ ⟩|𝜑 Eqn. (15.11).

• The first term is a result of  the operation of the Hadamard on 
the first input qubit  ⟩|0 and the  subsequent  effect  of 
operating on the result with a  controlled-𝑈!.  The second  
term is merely  a  result  of operating with the Hadamard  on  
the second input qubit, and the third term is  the  qubit  in the 
last register.

Result of Adding a Second Controlled-U Operator



• Action of  the controlled-𝑈%on  the second  qubit in  the circuit on the previous slide can  be written as

𝑈% ⟩|@ B ⟩|$
%

⊗ ⟩|𝜑 = ⟩|@ BCDE %&'(%() ⟩|$
%

⊗ ⟩|𝜑 Eqn. (15.12).

• We note that 2𝜗 = 2 0. 𝜗$𝜗% = 2 𝜗$2#$ + 𝜗%2#% = 𝜗$ + 𝜗%2#$ = 𝜗$. 𝜗%.  Inserting this result into 
the  phase term of (15.12)  yields exp 2𝜋𝑗(𝜗$. 𝜗%) = exp 2𝜋𝑗(𝜗$+0. 𝜗% = exp 2𝜋𝑗𝜗$ exp 2𝜋𝑗0. 𝜗% .

• The term exp 2𝜋𝑗𝜗$ = 1 because 𝜗$ is an integer.  This means the effect of the Hadamard and the 
controlled-𝑈% operator on the  second qubit at plane 3  is  

⟩|@ BCDE %&'@.(( ⟩|$
%

⊗ ⟩|𝜑 Eqn. (15.13).

• Combining our  results,  we get the overall state vector at plane  3 for the  circuit as

⟩|𝜒I = ⟩|@ BCDE %&'@.($(( ⟩|$
%

⊗ ⟩|@ BCDE %&'@.(( ⟩|$
%

⊗ ⟩|𝜑 Eqn. (15.14).
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Action of the Controlled-𝑼𝟐 Operator 



• Clearly, multiple applications  of the controlled-U  operator raised to various powers of 2 lead  to phase 
encoding into the appropriate qubits in the input  register. The effect is as follows

K
exp 2𝜋𝑗(2@𝜗) = exp 2𝜋𝑗0. 𝜗$
exp 2𝜋𝑗(2$𝜗) = exp 2𝜋𝑗(0. 𝜗$𝜗%)
exp 2𝜋𝑗(2ℓ𝜗) = exp 2𝜋𝑗(0. 𝜗ℓ𝜗ℓB$…

Eqn. (15.15).

• We now know the combined effects of  the Hadamard and the  controlled-U operators of various  powers 
of 2 encode phase  information into  the input  qubits, but how do we read (get) that information out?

• Since expression (15.14) is reminiscent of the quantum Fourier transform, perhaps one can read the  phase 
values by inverting expression  (15.14).  Such inversion could be accomplished by the inverse Fourier 
transform. 
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Generalizing the Effect of Controlled-𝑼𝟐𝒏Operator



• We learned that  the  QFT  of a  state vector ⟩|𝑥 !,  where 𝑛 indicates  the number of  bits is

𝑄𝐹𝑇(%&) ⟩|𝑥 ! =
1
2!

7
J+@

%&#$

exp
2𝜋𝑗𝑥𝑦
2!

⟩|𝑦

• We  can rewrite  the equation  above as

𝑄𝐹𝑇(%&) ⟩|𝑥 ! =
1
2!

7
J+@

%&#$

exp
2𝜋𝑗𝑥𝑦
2!

⟩|𝑦 =
1
2!

7
J+@

%&#$

exp 2𝜋𝑗𝑥 7
ℓ+@

%&#$

𝑦ℓ2#ℓ ⟩|𝑦

• Rewriting again, we get

𝑄𝐹𝑇(%&) ⟩|𝑥 ! =
1
2!

7
J$+@

$

7
J(+@

$

… 7
J&+@

$

Q
ℓ+$

!

exp
2𝜋𝑗𝑥𝑦ℓ
2ℓ

⟩|𝑦K

• And  again, 

𝑄𝐹𝑇(%&) ⟩|𝑥 ! =
1
2!
Q
ℓ+$

!

⟩|0 + exp
2𝜋𝑗𝑥𝑦ℓ
2ℓ

| ⟩1 Eqn. 15.16 .
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Revisiting the  Quantum Fourier Transform



• Eqn. (15.16) is a tensor product  that can  be written  out as

𝑄𝐹𝑇(%&) ⟩|𝑥 ! = $
%&

⟩|0 + exp %&'L
%$

| ⟩1 ⟩|0 + exp %&'L
%(

| ⟩1 … ⟩|0 + exp %&'L
%&

| ⟩1 Eqn.  (15.17).

• By noting that  in binary we  can write 
L
%&
= L$L(…L&

%&
= L$

%$
+ L(
%(
+⋯ L&

%&
= 0. 𝑥$𝑥%…𝑥! Eqn. (15.18).

• And  that
L

%&'$
= 2 L$L(…L&

%&
= 𝑥$ + 0. 𝑥%𝑥I…𝑥! Eqn. (15.19).

• Eqn. (15.19) allows  us to  conclude that

exp %&'L
%&'$

= exp 2𝜋𝑗𝑥$ exp 0. 𝑥%𝑥I…𝑥! = exp 0. 𝑥%𝑥I…𝑥! Eqn.  (15.20)

• Eqns. (15.18), (15.19) and (15.20) permit use to rewrite  (15.17)  as
𝑄𝐹𝑇("7) ⟩|𝑥 0 = !

"7
⟩|0 + exp 2𝜋𝑗0. 𝑥0 | ⟩1 ⟩|0 + exp 2𝜋𝑗0. 𝑥01!𝑥0 | ⟩1 … ⟩|0 + exp 2𝜋𝑗0. 𝑥!𝑥"…𝑥0 | ⟩1 Eqn. 

(15.21).
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QFT Revisited 



• Eqn. (15.21) shows that if our input register has qubits written as ⟩|𝜗$ ⟩|𝜗% ⟩… |𝜗! , then the QFT would be 

𝑄𝐹𝑇 ⟩|𝜗$𝜗%…𝜗! = $
%&

⟩|0 + exp 2𝜋𝑗0. 𝜗$ | ⟩1 ⟩|0 + exp 2𝜋𝑗0. 𝜗$𝜗% | ⟩1 … (
)

⟩|0 +
exp 2𝜋𝑗0. 𝜗$𝜗%…𝜗! | ⟩1

• Notice that the state vector  expression  above is similar to our result  of  the phase estimation  Eqn. (15.14)  
but in reverse order.

• This  identification tells us that to read out the phase information encoded into the input register we simply 
take the inverse Fourier transform.

• Copying from (15.14), we therefore  write

𝑄𝐹𝑇M
⟩|0 + exp 2𝜋𝑗0. 𝜗$𝜗% ⟩|1

2
⊗

⟩|0 + exp 2𝜋𝑗0. 𝜗% ⟩|1
2

⊗ ⟩|𝜑 = ⟩|𝜗% ⊗ ⟩|𝜗$ ⊗ ⟩|𝜑 Eqn. (15.22)
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Relationship of Input Register Data to QFT



• Based on the simple circuits for the  one- and two-qubit inputs that were acted on by the Hadamard and 
successive controlled-U operators raised  to increasing powers of 2, a  general circuit for phase estimation 
can be composed as shown below.
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General Phase Estimation Circuit 



• The action of the Hadamard  operators on the input register results in 

𝐻⊗! ⟩|0 ⊗! =
⟩|0 + ⟩|1
2

⊗
⟩|0 + ⟩|1
2

⊗⋯⊗
⟩|0 + ⟩|1
2

Eqn. 15.23 .

• After applying controlled-U operators, the circuit gives
𝑈 𝐻⊗0 ⟩|0 ⊗0

=
1
20

⟩|0 + exp 2𝜋𝑗0. 𝜗!𝜗"…𝜗0 | ⟩1 ⊗ ⟩|0 + exp 2𝜋𝑗0. 𝜗"…𝜗0 | ⟩1 ⊗⋯⊗ ⟩|0 + exp 2𝜋𝑗0. 𝜗0 | ⟩1

• Taking the inverse quantum Fourier transform of the expression  above results in

𝑄𝐹𝑇M 𝑈 𝐻⊗! ⟩|0 ⊗! = ⟩|𝜗! ⊗ ⟩|𝜗!#$ ⊗…⊗ ⟩|𝜗$ Eqn. (15.24).

• A quantum measurement after the step above should then  yield the estimated phase.
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Sequence of Equations for the General QPE



• We stated earlier that a linear algebraic system of equations  is given by
𝐴𝑥 = 𝑏, 𝐴 ∈ ℂ%!×%!, 𝑥 ∈ ℂ%!,  and b ∈ ℂ,  Eqn. (15.3).

• In order to solve  this problem with a quantum  computer  we must prepare the input state vector(s) and 
Hermitian  operators.

• We require that the system be rewritten as
𝐴 ⟩|𝑥 = ⟩|𝑏 Eqn. (15.25).

• Since 𝐴 is Hermitian, it can be written in a spectrally decomposed form, thus
𝐴 = ∑K+@N#$ ⟩𝜆K|𝑢K ⟨𝑢K|,  𝜆K ∈ ℝ Eqn. (15.26)

• In (15.26), 𝑢K are the eigenvectors of 𝐴 and the 𝜆K are the corresponding eigenvalues. In principle, one 
can immediately determine  the inverse  of 𝐴, thus

𝐴#$ = ∑K+@N#$ [𝜆K#$|𝑢K ⟨𝑢K|,  𝜆K ∈ ℝ Eqn. (15.27)
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Linear Algebra System of Equations



• The state  vector | ⟩𝑏 on  the right-hand side of (15.25) can be  expanded as linear combination of basis 
states, thus

⟩|𝑏 = ∑K+@N#$𝑏K ⟩|𝑢K 𝑏K ∈ ℂ Eqn.  (15.28).

• Our  goal is  to eventually write the solution of  the problem in the form 

⟩|𝑥 = 𝐴#$ ⟩|𝑏 = ∑K+@N#$ [𝜆K#$|𝑢K ⟨𝑢K| 𝑏K ⟩|𝑢K = ∑K+@N#$ [𝜆K#$𝑏K|𝑢K ,  Eqn.  (15.29).

• Note that in(15.29), we have used the fact  that \𝑢K ⟩|𝑢K = 1.

• Since   this is a quantum system, all state vectors are (or must be) normalized and the operator must be 
unitary.
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Solution of the Linear Algebraic System of Equation  



• There is a quantum algorithm called the HHL algorithm, named after its creators 
(Harrow, Hassadim and Lloyd) that was developed to solve linear  systems.

• The algorithm assumes that a quantum computer is available. It allocates 3 quantum 
registers initialized to ⟩|0 for  the task: register 1  is labeled as 𝑛; and it stores the 
eigenvalues of the matrix  𝐴; register 2 is labeled 𝑛< for storing the solution vector.  It 
is usually also assumed  that the problem is of size 𝑁 = 2=! .  There is also usually a  
third register that is used for storing intermediate steps in the calculations.

• The HHL algorithm is one of the  most widely studied approach  to solving a linear 
systems of equations. Although  it  doesn’t actually  give a final solution, it provides a  
framework for  how to go about solving such problems.   
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Quantum Algorithm for Solving Linear Systems 
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Original Source for Discussion of HHL Algorithm
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Commentary on the HHL Algorithm

Nature Physics |  Vol 5| December 2009 | Page 861



• Key steps of the HHL Algorithm:

1. Load data from vector ⟩|𝑏 ∈ ℂ> into register 𝑛< so that  ⟩|0 =! ⟶ ⟩|𝑏 =! .

2. Calculate eigenvalues of 𝐴 via the operation 𝑈 = 𝑒?@AB ∶= ∑CDE>FG exp 𝑗𝜆C𝑡 ⟩|𝑢C >𝑢C|.

3. The register quantum state is now in the eigen basis of 𝐴 and  is  written  as 
∑CDE>FG𝑏C| ⟩𝜆C =" ⟩|𝑢C =! .  Note that ⟩|𝜆C =" is a 𝑛;-bit binary representation of the 
eigenvalues of  A.   One then  adds  an  auxiliary qubit before a  rotation is applied; 
the rotation  is dependent on the values of the eigenvalues, 𝜆C.
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HHL Algorithm



• The  auxiliary qubit is usually written as 

?
CDE

>FG

𝑏C| ⟩𝜆C =" ⟩|𝑢C =! 1 −
𝐶?

𝜆C?
⟩|0 +

𝐶
𝜆C

⟩|1

• In the auxiliary qubit, 𝐶 is a  normalization  constant  that  is  assumed to obey the 
condition 𝐶 < 𝜆HI=.

4.  The inverse quantum phase estimation (𝑄𝑃𝐸J) algorithm is then  applied to the 
auxiliary  qubit to give

?
CDE

>FG

𝑏C| ⟩0 =" ⟩|𝑢C =! 1 −
𝐶?

𝜆C?
⟩|0 +

𝐶
𝜆C

⟩|1
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…HHL Algorithm



• 5. One then usually measures the auxiliary qubit in the computational basis. If  the  measurement collapses 
the  state  to  the ⟩|1 basis, then  one  obtains the normalized result

1

∑K+@N#$ 𝑏K %

𝜆K %

7
K+@

N#$
𝑏K
𝜆K
| ⟩0 !) ⟩|𝑢K !*

• This is  the desired solution up  to a normalization constant that can be appropriately scaled for the final 
solution.

• It is often the case that one does not need the actual solution but some function that depends on certain 
components of the of the solution vector.   In  such cases,  a measurable observable 𝑀 might be suitably 
applied for calculating the desired  function, thus, 

𝑓 𝑥 = 𝑥 𝑀 𝑥 .
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…HHL Algorithm



• Developed the quantum phase estimation (QPE) method 
– Related QPE to the QFT
– Review quantum gate circuit for QPE

• Discussed  a quantum computing  method  for solving a linear algebraic system
– Reviewed the HHL algorithm 
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Summary


