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Agenda

* Linear algebraic systems in Hilbert space
— Eigenvalues of unitary matrices
— Relationship of the phase of a state vector acted on by a unitary operator to produce an eigenvalue

— Phase estimation

* Revisiting the quantum Fourier transform

— Solution of linear algebraic systems using the quantum phase estimation method
— Harrow, Hassidim and Llyod (HHL) quantum linear systems algorithm
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Linear Algebraic Systems

* Some of the most widely used techniques in computing are based on the solution of a system of linear
equations that read

Ax =b, A€ R™ x € R"and b € R", Eqn.(15.1).

* Such asystem of equations may commonly arise when attempting to solve machine learning problems.

« When A is a small matrix and invertible, it is generally easy to find the unknown list (components of the

vector) in x; such solutions are obtained from
x = A7'b Eqn. (15.2).

» Popular methods of solution (for reasonably sized) matrices include the Gaussian elimination method
and the conjugate gradient method. However, when the system of equations exhibited in (15.1) is
generated from practical problems of interest such as in machine learning or discretized dynamical
differential equations governing behaviors of objects such as aircraft wings, solving such systems of
equations can be very challenging.

» There is a growing body of evidence that quantum computing can offer algorithms that can conceivably
solve linear systems faster and at lower computational cost.
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Linear Systems in Complex Vector Spaces

» Since vector spaces (Hilbert spaces) in quantum computing are complex, the linear system of equations
becomes

Ax = Ax, A € C*™*2" x € C?", and A1 € C, Eqn. (15.3).
» Here are a few important facts we will use later for the complex linear systems we discuss:
Ax = Ax = x = A~ 1Ax and A%x = 2%?x Eqn. (15.4).

— Reflections have phases of +1; rotations are implemented by e*/?, and projections have eigenvalue A = 1.

» For a unitary operator U with an eigenvector |x) that operates on a set of m qubits, we can write
Ulx) = A|x) = e?™?|x) Eqn. (15.5).
» Because of the unitarity of U, its eigenvalues have the norm 1 or |A| = 1, which is equivalent to writing
A = e?™Y Eqn. (15.6).

* Finding the eigenvalues of U is tantamount to determining the primitive roots of unity and translates to
figuring out the values of i such that 0 < < 1. This is the phase estimation problem.
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Binary Decimals

* A decimal in binary notation can be written as 9 = 0.949, ... 9, where each ¥; 1s either 0 or 1.

* One can therefore write

n
9 = 09,0, .0, O = Zﬁgz—f’
=1

e The number 0.75 in decimal 1s equivalent to the binary 0.11 because we can write

0.11 = 1x271 + 1x27% = 0.75.
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Phase Estimation

*  Since the phase in (15.5) is constrained to be constrained, 1.e., 0 < 9 < 1, we can write it as a

decimal binary number, thus
9 = 0.9,9,95 .9, = ¥3_,9,27¢ Eqn. (15.6).

« If we approximate ¥ = 0.9, then the constraint above implies we can rewrite (15.5) as
Ulx) = A|x) = e2™/%91|x) Eqn. (15.7).

«  For simplicity, we take it that |x) is an input to the operator U. A simple circuit that implements the 0)

process of making |x) available to U is illustrated on the right. If the input is initialized to |0), we
will use a Hadamard to create a superposition of the input state with (]1)), thus

H0y = 212 2

P o e e - e o e -

* Atthe plane 1, the state vector available for U = U 2%to operate on is the tensor product

(10)+]1) 0)lg)+ 1))
Py = @ o) = AR Egn. (15.9).

*  Recalling that a controlled-operator only changes what it operates on when the control qubit is 1, we
see that at plane 2 we will have

0)I@)+1I9)\ _ 10@)+1)UIg) _ 10)|o)+exp@mjo.9)1]e)
U ( - )= e = Eqn. (15.9).
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Phase Estimation

» The effect of U on the input to the circuit on the previous slide i1s Eqn. (15.9), which we rewrite as

0)|p)+exp(2mj0.91)|1)|p) 0)+exp(27mj0.91)|1)
¢2=I ¢ eXp\/gJ DI LRI =(I eXp\/;] 1| )®|<p) Eqn. (15.10).

* We see that U has written phase information into the first qubit but left the second qubit intact.

« The main idea here 1s that if we keep applying controlled-U operations at successively higher powers of
2021 .. 2"1 which means U2 ,U?,...U?"" (UL, U?, U*%...), we will encode phase information into
the input qubits.

«  We will next analyze what happens if we have a two-qubit input register and the operators U' and U?.
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Result of Adding a Second Controlled-U Operator

 Adding a second qubit to the the circuit and another
controlled-U gate that is squared leads to the circuit on the
left. With two qubits, we will also assume that 9 = 0.9,9,.

« If we look at plane 2, the state vector is now a tensor that

I I I
I I I
0)—— H ! T 1 1 includes the following
I I I
10y — H : I ? , |0)+ex ]
| | | _ p(21j0.919;)|1) [0)+]1)
) ! vt H vz - X2 ( 7z )®( 7z )®Ig0) Eqn. (15.11).
I I I
1 2 3

» The first term 1s a result of the operation of the Hadamard on
the first input qubit |0) and the subsequent effect of
operating on the result with a controlled-U!. The second
term is merely a result of operating with the Hadamard on
the second input qubit, and the third term is the qubit in the
last register.

(&) EeNCt&clallqg(Echhn l{iteGr 7 T E P P E R @ Universities Space Research Association 8



Carnegie Mellon University

Action of the Controlled-U? Operator

Q©

Action of the controlled-U?on the second qubit in the circuit on the previous slide can be written as

0)+(1 0 21j(29)|1

We note that 29 = 2(0.9,9,) = 2(9,271 + 9,272) = 9; + 9,271 = 9,.9,. Inserting this result into
the phase term of (15.12) yields exp(2mj(91.9,)) = exp(2mj(91+0.9,) = exp(2mj9,) exp(2mj0.9,).

The term exp(2mj9;) = 1 because 9, is an integer. This means the effect of the Hadamard and the
controlled-U? operator on the second qubit at plane 3 is

|0)+exp(21j0.9,)|1)
7 X |@)  Eqgn. (15.13).

Combining our results, we get the overall state vector at plane 3 for the circuit as

0)+ 21j0.9,9,)|1 0)+ 21j0.9,)|1
X3) = (' rrexpl e 2) >) Q1 exp(ﬁ 21D @ |p)  Eqn. (15.14).
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Generalizing the Effect of Controlled-U2"Operator

* C(Clearly, multiple applications of the controlled-U operator raised to various powers of 2 lead to phase
encoding into the appropriate qubits in the input register. The effect is as follows

exp(2mj(2°9)) = exp(2mj0.9,)
exp(2mj(219)) = exp(2mj(0.9195)) Eqn. (15.15).
exp(an(Z{)ﬁ)) = exp(2mj(0.9,9p41 -..)

We now know the combined effects of the Hadamard and the controlled-U operators of various powers
of 2 encode phase information into the input qubits, but how do we read (get) that information out?

» Since expression (15.14) is reminiscent of the quantum Fourier transform, perhaps one can read the phase
values by inverting expression (15.14). Such inversion could be accomplished by the inverse Fourier
transform.
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Revisiting the Quantum Fourier Transform

* We learned that the QFT ofa state vector |x)™, where n indicates the number of bits is
2n—1

n 1 2TTjXy
QFT @) |x) = \/? 2 exp( o ) |v)
y=0

« We canrewrite the equation above as

2"—1 ] 2"—1 2n—1
2TTjXy

n 1 1
QFT@D|x)* = — 2 eXp( - )|y> = — 2 exp | 2mjx 2 ve2~t | |y)
\/Z_n y=0 2 \/Z_n y=0 £=0

« Rewriting again, we get

, 1 1 1 n i
n XYy
QFT @)|x)" = \/? Z z z exp( 57 )lyk)
Y1=0y7=0 yp=0f=1
 And again,
n
n 1 27X
QFT @D x)" = e (|O) + exp( ;{)y{;) |1)) Eqn. (15.16).
=1
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QFT Revisited

 Eqn. (15.16) 1s a tensor product that can be written out as

QFT@) )" = —(10) + exp (22) 1)) (10) + exp (52

N

TjXx

= )|1>) Eqn. (15.17).

2TTjX
21

)11))... (10 + exp (

By noting that in binary we can write

23; = xlxzz;.xn - )26_1 + 92% + ;c_z = 0.x1%3 ... X Eqn. (15.18).
* And that
2:5_1 — > x1x221.l--xn = x; + 0.x,%x3 ...x,, Eqn. (15.19).

Eqn. (15.19) allows us to conclude that

exp (2:{?) = exp(2mjxy) exp(0. x5x3 ... x,,) = exp(0.x,x3 ...x,) Eqn. (15.20)

Eqgns. (15.18), (15.19) and (15.20) permit use to rewrite (15.17) as

QFT(Zn)|x)" = \/%—n(w) + exp(2mj0.x,) |1)) (|0) + exp(27j0. x,,_1x;,,) |1))... (JO) + exp(2mj0. x1 x5 ... x,) |1)) Eqn.
(15.21).
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Relationship of Input Register Data to QFT

* Eqn. (15.21) shows that if our input register has qubits written as |91)|39,)... |9;,), then the QFT would be
1 . :
QFT|919, ...9;,) = \/T_n(l()) + exp(2mj0.9,) |1)) (|0) + exp(2mj0.9:9,) |1))... (]0O) +
exp(2mj0.919, ...9,) |1))

» Notice that the state vector expression above is similar to our result of the phase estimation Eqn. (15.14)
but in reverse order.

« This identification tells us that to read out the phase information encoded into the input register we simply
take the inverse Fourier transform.

* Copying from (15.14), we therefore write
0) + exp(2mj0.9,9,)|1 0) + exp(2mj0.9,)|1
QFT+<<| ) + exp(2mj0.9,19,)| >>® 0) + exp(27j0. 8)|1)

7 7 ® |90>) = |9,) ® |91) ® |@) Eqn. (15.22)
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General Phase Estimation Circuit

» Based on the simple circuits for the one- and two-qubit inputs that were acted on by the Hadamard and
successive controlled-U operators raised to increasing powers of 2, a general circuit for phase estimation
can be composed as shown below.

o— & ' F‘EI
I0%:——{ H ® -———12??5}

QFTT
o) —[ v’ b— uv? ]__[ U2t =
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Sequence of Equations for the General QPE

» The action of the Hadamard operators on the input register results in

RQnn\®n — |

« After applying controlled-U operators, the circuit gives
U( H ®n|0>®n)

1
= (10) + exp(27j0. 9,9, ... ¥) 1)) ® (|0) + exp(27j0.9; ... 9,) [1)) & - @ (|0) + exp(270.9,,)[1))

» Taking the inverse quantum Fourier transform of the expression above results in

QFTT (U(H®™[0)8™)) = |9,)  |95-1) ®...® [01) Eqn. (15.24).

* A quantum measurement after the step above should then yield the estimated phase.
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Linear Algebra System of Equations

» We stated earlier that a linear algebraic system of equations 1s given by
Ax = b, A € C*™?" x € C*", and b € C, Eqn. (15.3).

* In order to solve this problem with a quantum computer we must prepare the input state vector(s) and

Hermitian operators.

* We require that the system be rewritten as
A|x) = |b) Eqn. (15.25).

» Since A is Hermitian, it can be written in a spectrally decomposed form, thus
A = YRZ0Aklwge) (ugel, A, € R Eqn. (15.26)

* In (15.26), uy are the eigenvectors of A and the A, are the corresponding eigenvalues. In principle, one
can immediately determine the inverse of A4, thus

AT =Y N0 ) (ugl, Ak € R Eqn. (15.27)
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Solution of the Linear Algebraic System of Equation

» The state vector |b) on the right-hand side of (15.25) can be expanded as linear combination of basis
states, thus

by = Y N=3 by |ug) by € C Eqn. (15.28).
 Qur goal is to eventually write the solution of the problem in the form
|x) = A7 |b) = XNZo Ak k) (uk| brlug) = XRZoAx brlug), Eqn. (15.29).
* Note that in(15.29), we have used the fact that (uk|uk) = 1.

* Since this is a quantum system, all state vectors are (or must be) normalized and the operator must be
unitary.
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Quantum Algorithm for Solving Linear Systems

e There 1s a quantum algorithm called the HHL algorithm, named after its creators
(Harrow, Hassadim and Lloyd) that was developed to solve linear systems.

« The algorithm assumes that a quantum computer 1s available. It allocates 3 quantum
registers initialized to |0) for the task: register 1 is labeled as n; and it stores the
eigenvalues of the matrix A; register 2 is labeled ny, for storing the solution vector. It
is usually also assumed that the problem is of size N = 2"». There is also usually a
third register that 1s used for storing intermediate steps in the calculations.

 The HHL algorithm 1s one of the most widely studied approach to solving a linear
systems of equations. Although 1t doesn’t actually give a final solution, it provides a
framework for how to go about solving such problems.
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Original Source for Discussion of HHL Algorithm

week ending

PRL 103, 150502 (2009) PHYSICAL REVIEW LETTERS 9 OCTOBER 2009

E'S

Quantum Algorithm for Linear Systems of Equations

Aram W. Harrow,' Avinatan Hassidim,” and Seth l..loyd:‘

'Qcpa.rlmcru of Mathematics, University of Bristol, Bristol, BS8 1TW, United Kingdom
“Research Laboratory for Electronics, MIT, Cambridge, Massachusetts 02139, USA
‘Research Laboratory for Electronics and Department of Mechanical Engineering, MIT, Cambridge, Massachusers 02139, USA

(Recetved S July 2009; published 7 October 2009)

Solving linear systems of equations is a common problem that arises both on its own and as a subroutine
in more complex problems: given a matrix A and a vector b, find a vector £ such that AT = 5. We consider
the case where one does not need to know the solution X itself, but rather an approximation of the
expectation value of some operator associated with £, e.g., ' M1 for some matrix M. In this case, when A
18 sparse, N X N and has condition number . the fastest known classical algonthms can find £ and
estimate ' MI in ume scaling roughly as ¥ /x. Here, we exhibit a quantum algorithm for estimating
' M1 whose runtime is a polynomial of log(N) and «. Indeed, for small values of & [ie., poly log(V)]. we
prove (using some common complexity-theoretic assumptions) that any classical algorithm for this
problem genencally requires exponentially more time than our quantum algorithm.
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Commentary on the HHL Algorithm

Q©

QUANTUM ALGORITHMS

Equation solving by simulation

Quantum computers can outperform their classical counterparts at some tasks, but the full scope of their power is
unclear. A new quantum algorithm hints at the possibility of far-reaching applications.

Andrew M. Childs

vantum mechanical computers have

the potential to quickly perform

calculations that are infeasible with
present technology. There are quantum
algorithms to simulate efficiently the
dynamics of quantum systems' and to
decompose integers into their prime
factors’, problems thought to be intractable
for classical computers. But quantum
computation is not a magic bullet — some
problems cannot be solved dramatically
faster by quantum computers than by

state |b). Then, by a well-known technique
called phase estimation’, the ability to
produce ¢ '*|b) is leveraged to create a
quantum state [x} proportional to A~'|b).
(A similar approach can be applied when
the matrix A is non-Hermitian, or even
when A is non-square.) The result is a
solution to the system of linear equations
encoded as the quantum state |x).

Producing 2 quantum state proportional
to A”'|b} does not, by itself, solve the task
at hand. To extract information from

can be encoded into an instance of solving
linear equations, even with the restrictions
required for their quantum solver to be
efficient. Therefore, either ordinary classical
computers can efficiently simulate quantum
ones — a highly unlikely proposition — or
the quantum algorithm for solving linear
equations performs a task that is beyond the
reach of classical computation.

Proving “hardness’ results of this kind
is 2 widely used strategy for establishing
the non-triviality of quantum algorithms.

Nature Physics | Vol 51 December 2009 | Page 861

Electrical & Computer

ENGINEERING

<y TEPPER

@ Universities Space Research Association 20



Carnegie Mellon University

HHL Algorithm

« Key steps of the HHL Algorithm:

1. Load data from vector |b) € CV into register n;, so that 10)n, — |D)n,-
2. Calculate eigenvalues of A via the operation U = 2™t := Y ¥~ exp(jAt) |ug ){ur|.

3. The register quantum state is now in the eigen basis of A and 1s written as
Y N=3 by AkIn, [ Ui dn, - Note that |4 )y, is a ny-bit binary representation of the
cigenvalues of A. One then adds an auxiliary qubit before a rotation 1s applied;
the rotation 1s dependent on the values of the eigenvalues, 4.
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...HHL Algorithm

 The auxiliary qubit 1s usually written as

k=0 N M A

e In the auxiliary qubit, C 1s a normalization constant that 1s assumed to obey the
condition |C| < Ain.

4. The inverse quantum phase estimation (QPET) algorithm is then applied to the
auxiliary qubit to give

bkl())nlluk)nb 1 2 |O>+_|1)
k=0 N He
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...HHL Algorithm

e 5. One then usually measures the auxiliary qubit in the computational basis. If the measurement collapses
the state to the |1) basis, then one obtains the normalized result

N—
k
Z ){_ 0>n;L |uk>nb
\

» This is the desired solution up to a normalization constant that can be appropriately scaled for the final
solution.

Z M |2

« It is often the case that one does not need the actual solution but some function that depends on certain
components of the of the solution vector. In such cases, a measurable observable M might be suitably
applied for calculating the desired function, thus,

f(x) = (x|M]x).
ectrical & Computer '
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Summary

« Developed the quantum phase estimation (QPE) method
— Related QPE to the QFT

— Review quantum gate circuit for QPE

e Discussed a quantum computing method for solving a linear algebraic system
— Reviewed the HHL algorithm
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